Heat Pump Systems

Heat pumps can be powered by renewable energy sources such as solar, wind, and geothermal energy to provide efficient heating and cooling. When renewable energy is used to operate heat pumps, the overall system becomes more environmentally friendly and sustainable.

NEWS - AVAILABLE GRANTS SEAI !!! New funding ranges from €2,700 to €162,600 to support an even wider range of businesses to switch to solar. This will typically support 20-30% of the investment cost, reducing payback to as little as 2 years. New Solar PV Scheme enhancements will boost business investment in renewable energy generation.   SPECIAL EVENTS - SEPTEMBER 14th Association of Energy Engineers Ireland Conference 2023 – at the SETU Arena, Waterford.

Heat Pump Systems

Heat pumps are considered a renewable technology when they utilize renewable energy sources to operate. The primary types of heat pumps that can be integrated with renewable energy sources are air source heat pumps, ground source (geothermal) heat pumps, and water source heat pumps.

Air to Water Heat Pump

These heat pumps extract heat from the ambient air and transfer it to a building for space heating or hot water. They can work efficiently even in colder climates. ASHPs can be powered by electricity, and if that electricity is generated from renewable sources like solar or wind, the overall system can be considered renewable.

Find more >

Ground Source Heat Pumps

GSHPs, also known as geothermal heat pumps, use the relatively constant temperature of the ground to exchange heat with a building. They are highly efficient and can provide both heating and cooling. While the ground temperature is not a "renewable" source per se, it's a stable and naturally available heat source that can significantly reduce the energy consumption of a building. If the electricity used to operate the GSHP comes from renewable sources, the overall system becomes more sustainable.

Find more >

Direct Hot Water Heat Pump

A direct hot water heat pump, also known as a water heater heat pump, is a type of heat pump specifically designed to provide hot water for domestic or commercial use. It operates by extracting heat from the surrounding air and transferring it to a water storage tank, heating the water for various purposes like bathing, cleaning, and other hot water needs.

Find more >

Commercial - High Efficiency Heat Pumps

High-efficiency heat pumps for commercial use are advanced heating, cooling, and sometimes hot water systems designed to provide efficient temperature control in commercial buildings while minimizing energy consumption. These systems are designed to be more energy-efficient than traditional heating, ventilation, and air conditioning (HVAC) systems, helping businesses reduce their energy costs and environmental impact.

Find more >

10 Benefits of the heat pumps powered by renewables:

co2

1. Reduced Carbon Emissions:

ERV and HRV systems provide a continuous supply of fresh outdoor air while expelling stale indoor air. This helps maintain a healthier indoor environment by reducing the concentration of pollutants, odors, and contaminants.

Find more >

energy efficiency hand touch screen with colored symbols on interior kitchen background web banner and copy space template

2. Energy Efficiency:

Heat pumps are inherently efficient because they move heat rather than generate it through combustion. When combined with renewable energy, their efficiency is further enhanced, as the energy input comes from sources with high energy conversion efficiency.

Find more >

3D rendering of the architecture model of a circular building with trees on top of blueprints, documents  and energy efficiency chart

3. Lower Operating Costs:

Renewable energy sources like solar, wind, and geothermal are typically free or have low operating costs. Heat pumps that use these sources can significantly lower energy bills, making them cost-effective over the system's lifespan.

Find more >

Digital temperature and humidity control in baby room

4. Energy Independence:

Generating your own renewable energy allows you to become less reliant on external energy sources and utility providers. This enhances your energy security and reduces vulnerability to energy price fluctuations.

Find more >

5. Long-Term Sustainability:

As renewable energy sources are replenished naturally, they ensure a long-term and sustainable energy supply for heat pumps.

Find more >

Plant by apartment's window in winter - Air cleaning plant Aloe Vera to clean air from toxic chemicals - natural purifier indoors in condo building.

6. Improved Air Quality:

Since heat pumps don't burn fossil fuels on-site, they don't release pollutants and harmful emissions into the air, leading to improved indoor and outdoor air quality.

Find more >

Construction and structure concept of Engineer or architect meeting for project working with partner and engineering tools on model building and blueprint in working site.

7. Incentives and Rebates:

Many governments and utilities offer incentives, tax credits, and rebates to encourage the adoption of renewable energy systems, which can help offset the initial installation costs.

Find more >

csm_Banner1

8. Enhanced Property Value:

Homes and buildings equipped with renewable energy-powered heat pump systems often have higher property values due to their energy efficiency and reduced operating costs.

Find more >

9. Mitigated Energy Price Volatility

Renewable energy sources are less susceptible to market price fluctuations compared to fossil fuels, providing greater stability in energy costs.

Find more >

comuniti 2
10. Community Engagement:

Adopting renewable energy systems can contribute to community engagement, as it demonstrates your commitment to environmental sustainability and encourages others to consider similar options.

Find more >

How heat pumps work with various renewable energy sources?

Heat pumps can be powered by renewable energy sources such as solar, wind, and geothermal energy to provide efficient heating and cooling. When renewable energy is used to operate heat pumps, the overall system becomes more environmentally friendly and sustainable.

Main Roof - angle 1

1. Solar-Powered Heat Pumps:

  • Solar energy is captured using photovoltaic (PV) panels, which convert sunlight into electricity.
  • This electricity is used to power the heat pump's compressor and other components.
  • The heat pump uses the electricity to drive the refrigeration cycle, transferring heat from a low-temperature area (e.g., outdoor air or ground) to a high-temperature area (indoors or hot water storage).

Find more >

Ingegnere con gilet e caschetto fa manutenzione alla turbina eolica alta 100 metri, in montagna

3. Wind-Powered Heat Pumps:

  • Wind turbines generate electricity from the kinetic energy of the wind.
  • The generated electricity is used to operate the heat pump, following the same process as solar energy process. The heat pump transfers heat as needed, either for space heating or cooling and domestic hot water.

Find more >

5. Geothermal-Powered Heat Pumps:

  • Geothermal energy is derived from the Earth's natural heat, available underground.
  • A ground source heat pump (GSHP) is used to extract heat from the ground and transfer it to a building.
  • GSHPs can work in both heating and cooling modes by exchanging heat with the ground through a loop system.
  • Renewable electricity may still be required to power the heat pump's compressor and other components, enhancing the overall efficiency of the system.

Find more >

9 STEPS to installing a Heat Pump System with Renewables Energy Source

1. Site Assessment and Planning:

  • Determine the heat pump type: air-to-air, air-to-water, ground source, etc., based on your heating and cooling needs.
  • Evaluate the location for installation, considering factors like available space, climate, and access to renewable energy sources (if applicable).
  • Check if any permits or approvals are required for installation in your area.

2. Sizing and Design:

  • Calculate the heat load of your building to determine the appropriate heat pump capacity.
  • Design the distribution system for heating and cooling (ductwork, piping, radiators, etc.).
  • Plan the integration of renewable energy sources such as solar panels or wind turbines.

3. Renewable Energy Source Installation:

  • If installing solar panels, determine the suitable location and orientation for optimal sunlight exposure.
  • Install solar panels or wind turbines according to manufacturer guidelines and local regulations.
  • Connect the renewable energy system to the electrical grid or storage system.

4. System Components:

  • Purchase the heat pump unit along with necessary components like air handlers, coils, expansion valves, etc.
  • For ground source systems, plan and install the ground loop or boreholes if applicable.

5. Preparation:

  • Install any required electrical wiring or circuits for the heat pump and renewable energy system.
  • Ensure the installation site is ready and clean for efficient installation.

6. Indoor Unit Installation and Outdoor Unit Installation:

  • Install the indoor unit, connecting it to the distribution system (ductwork, radiators, etc.).
  • Ensure proper insulation and sealing to prevent energy loss.
  • Position the outdoor unit on a stable surface with sufficient clearances for airflow.
  • Connect refrigerant lines between the indoor and outdoor units.

7. Refrigerant Charging and Electrical Connection:

  • Charge the system with refrigerant as per manufacturer specifications.
  • Check for refrigerant leaks and proper pressure levels.
  • Connect the heat pump and renewable energy system to the electrical grid or storage system.
  • Ensure proper grounding and compliance with safety codes.

8. Controls and Integration and Testing and Commissioning and User Training

 

  • Install and configure the thermostat or control system to operate the heat pump and renewable energy sources efficiently.
  • Integrate the renewable energy system with the heat pump controls.
  • Test the heat pump system in both heating and cooling modes.
  • Verify the operation of the renewable energy system and its integration with the heat pump.
  • Check for leaks, system pressures, and temperature differentials.
  • Provide training to the building owner or user on how to operate and maintain the heat pump and renewable energy system.
  • Explain troubleshooting and maintenance tasks specific to the integrated system.

9. Regular Maintenance:

  • Establish a maintenance schedule to ensure the ongoing efficiency and performance of the heat pump and renewable energy system.

Need help? Book a call at a time to suit your schedule

The Hercuglas team is delighted to talk with you.

Scroll to Top